Methamphetamine-Induced Neurotoxicity and Formation of Hydroxyl Radical
نویسندگان
چکیده
منابع مشابه
Hydroxyl radical-induced formation of highly oxidized organic compounds
Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized mul...
متن کاملRole of microglia in methamphetamine-induced neurotoxicity.
Methamphetamine (Meth) is an addictive psychostimulant widely abused around the world. The chronic use of Meth produces neurotoxicity featured by dopaminergic terminal damage and microgliosis, resulting in serious neurological and behavioral consequences. Ample evidence indicate that Meth causes microglial activation and resultant secretion of pro-inflammatory molecules leading to neural injury...
متن کاملDietary phytate lowers K-ras mutational frequency, decreases DNA-adduct and hydroxyl radical formation in azoxymethane-induced colon cancer
Objective(s): Dietary phytate is known to protect against azoxymethane (AOM)-induced preneoplastic lesions. The present study was designed to determine whether dietary phytate affects mutation frequency in colon epithelial cells challenged with azoxymethane in vivo, through lowering the formation of O6-methyl guanosine (O6-MeG) and 8-hydroxy deoxyguanosine (8-OHdG) ad...
متن کاملΔ9-Tetrahydrocannabinol Prevents Methamphetamine-Induced Neurotoxicity
Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthe...
متن کاملRole of Sigma Receptors in Methamphetamine-Induced Neurotoxicity
Methamphetamine (METH) is a widely abused substance world over. Currently, there is no effective pharmacotherapy to treat its effects. This necessitates identification of potential novel therapeutic targets. METH interacts with sigma (σ) receptors at physiologically relevant micromolar concentrations. In addition, σ receptors are present in organs like the brain, heart, and lungs at which METH ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese Journal of Pharmacology
سال: 1997
ISSN: 0021-5198
DOI: 10.1016/s0021-5198(19)45500-5